DNA buoyant density shifts during 15N-DNA stable isotope probing.

نویسندگان

  • Alison M Cupples
  • Elizabeth A Shaffer
  • Joanne C Chee-Sanford
  • Gerald K Sims
چکیده

DNA-based stable isotope probing (SIP) is a novel technique for the identification of organisms actively assimilating isotopically labeled compounds. Herein, we define the limitations to using 15N-labeled substrates for SIP and propose modifications to compensate for these shortcomings. Changes in DNA buoyant density (BD) resulting from 15N incorporation were determined using cultures of disparate GC content (Escherichia coli and Micrococcus luteus). Incorporation of 15N into DNA increased BD by 0.015+/-0.002 g mL(-1) for E. coli and 0.013+/-0.002 g mL(-1) for M. luteus. The DNA BD shift was greatly increased (0.045 g mL(-1)) when dual isotope (13C plus 15N) labeling was employed. Despite the limited DNA BD shift following 15N enrichment, we found the use of gradient fractionation, followed by a comparison of T-RFLP profiles from fractions of labeled and control treatments, facilitated detection of enrichment in DNA samples from either cultures or soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-be...

متن کامل

Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing.

This study reported the application of 15N-stable isotope probing (SIP) to identify active hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-utilizing microorganisms in groundwater microcosms. Fifteen 16S rRNA gene sequences were derived from the 15N-DNA fraction (contributed from active microorganisms capable of using RDX as a nitrogen source) of microcosms receiving cheese whey. The 16S rRNA gene...

متن کامل

Identification of in situ 2,4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing

Stable isotope probing (SIP) was used to investigate the microorganisms responsible for degradation of the herbicide, 2,4dichlorophenoxyacetic acid (2,4-D) in soil samples. Soils were unamended or amended with either unlabeled 2,4-D or UL(ring) C-2,4D. Degradation of 2,4-D was complete after 17 days, whereas little removal (1173%) was observed in the sterile controls. Terminal restriction fragm...

متن کامل

Application of GelGreen™ in Cesium Chloride Density Gradients for DNA-Stable Isotope Probing Experiments

In this study, GelGreen™ was investigated as a replacement for SYBR® Safe to stain DNA in cesium chloride (CsCl) density gradients for DNA-stable isotope probing (SIP) experiments. Using environmental DNA, the usage of GelGreen™ was optimized for sensitivity compared to SYBR® Safe, its optimal concentration, detection limit for environmental DNA and its application in environmental DNA-SIP assa...

متن کامل

Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing.

Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betapro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiological research

دوره 162 4  شماره 

صفحات  -

تاریخ انتشار 2007